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The finite wavelength instability of viscosity-stratified three-layer flow down an
inclined wall is examined for small but finite Reynolds numbers. It has previously been
demonstrated using linear theory that three-layer zero-Reynolds-number instabilities
can have growth rates that are orders of magnitude larger than those that arise in two-
layer structures. Although the layer configurations yielding large growth instabilities
have been well characterized, the physical origin of the three-layer inertialess instability
remains unclear. Using analytic, numerical and experimental techniques, we investigate
the origin and evolution of these instabilities. Results from an energy equation derived
from linear theory reveal that interfacial shear and Reynolds stresses contribute to the
energy growth of the instability at finite Reynolds numbers, and that this remains true
in the limit of zero Reynolds number. This is thus a rare example that demonstrates
how the Reynolds stress can play an important role in flow instability, even when
the Reynolds number is vanishingly small. Numerical solutions of the Navier–Stokes
equations are used to simulate the nonlinear evolution of the interfacial deformation,
and for small amplitudes the predicted wave shapes are in excellent agreement
with those obtained from linear theory. Further comparisons between simulated
interfacial deformations and linear theory reveal that the linear evolution equations
are surprisingly accurate even when the interfaces are highly deformed and nonlinear
effects are important. Experimental results obtained using aqueous gelatin systems
exhibit large wave growth and are in agreement with both the theoretical predictions
of small-amplitude behaviour and the nonlinear simulations of the large-amplitude
behaviour. Quantitative agreement is confounded owing to water diffusion driven
by differences in gelatin concentration between the layers in experiments. However,
the qualitative agreement is sufficient to confirm that the correct mechanism for the
experimental instability has been determined.

1. Introduction
The simultaneous multiple-layer flow of liquid layers down an inclined plane is a

fundamental configuration often found in the manufacture of photographic products
(Kistler & Schweizer 1997; Weinstein & Ruschak 2004). The inclined surfaces of a
coating die distributor allow liquid layers to be stacked on top of one another in
preparation for simultaneous coating on a moving substrate (a web). If the web path
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after coating is inclined, gravity induces a flow with respect to the web; in the web
frame, the simultaneous flow of liquid layers down a stationary inclined surface is
again achieved. It is well known that the simultaneous flow of viscosity stratified layers
can lead to instabilities, in the form of travelling waves, which result in undesirable
thickness variations in coated products.

There is an extensive literature on instabilities arising in gravity-driven flows
down inclined walls, and the reader is referred to Joseph & Renardy (1992) and
Chen (1995) for relevant reviews. Initial work on flow instabilities in these con-
figurations highlighted the importance of fluid inertia in obtaining flow instabilities
as characterized by a Reynolds number, Re= ρUd/µ. Here, ρ is the fluid density, U

is a characteristic velocity taken to be either the undisturbed free surface or mean
velocity in the flow, d is the total film thickness, and µ is a characteristic viscosity. For
example, Yih (1967) demonstrated that the two-layer viscosity-stratification instability
in both plane Poiseuille and Couette flows becomes neutrally stable in the limit as
Re → 0. Later works, reviewed by Chen (1995), show that all two-layer interfacial
flows confined within walls require inertia to destabilize liquid–liquid interfaces.

For a single-layer free-surface flow down an inclined plane, inertia is required for
destabilization (Benjamin 1957; Yih 1963) as in confined configurations. However,
for two-layer free-surface flows, Kao (1968), Loewenherz & Lawrence (1989) and
Chen (1993) show that a travelling interfacial wave instability can arise without fluid
inertia, i.e. in the Re= 0 approximation to the flow; this instability is thus termed
inertialess. In flows having two layers or more, the number of possible travelling wave
modes (excluding shear waves) is equal to the number of interfaces and free surfaces,
provided that there is a jump in physical properties or interfacial tension between
layers; this is due to the degrees of freedom they impart via the interface and free-
surface deformability. In two-layer flows, the instability arises because of the presence
of the liquid–liquid interface. The free-surface mode is found to be stable when
Re= 0 and its character is similar to that of its single-layer counterpart (Weinstein
1990). Although the inertialess instability is primarily due to modes associated with
the liquid–liquid interface, it is found that when the upper-layer free surface in a
two-layer flow is removed either by replacing it with another solid wall (Renardy
1985, 1987; Chen 1995; Tilley, Davis & Bankoff 1994a,b) or by extending the upper
layer to infinity (Hooper & Boyd 1983; Hooper 1985; Hooper & Grimshaw 1985),
the inertialess instability does not occur.

Inertialess instability is also encountered in flows having more than two layers with
a free surface (Wang, Seaborg & Lin 1978; Weinstein & Kurz 1991; Kliakhandler &
Sivashinsky 1997; Weinstein & Chen 1999). Additionally, note that inertialess
instabilities may now arise in such flows when they are confined by walls (Li 1969).
Weinstein & Chen (1999) examine the inertialess instability in a three-layer vertical
film flow in detail. They study the effect of three types of viscosity stratification
with constant layer viscosities. Regardless of the viscosity configuration, the wave
mode contributed by the free surface is always stable as in the two-layer case, and
instabilities arise owing to the presence of the liquid–liquid interfaces. A monotonic
increase of viscosity from the bottom layer to the top yields instabilities with growth
rates similar to those from the two-layer instabilities having a high-viscosity upper
layer as cited above. A monotonic decrease of viscosity does not yield an intertialess
instability, again as in the two-layer case for a lower-viscosity top layer. Weinstein &
Chen (1999) also find that when the middle layer is relatively thin, is nominally
located centrally in the three-layer configuration, and is either more or less viscous
than the other two layers, the disturbance growth rates are much larger than for
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two-layer flows. For the case of a more viscous middle layer, there are two isolated
finite bandwidths of disturbance wavelength in which the film is unstable. The largest
growth occurs at very short wavelengths and the instability does not persist into the
long wavelength regime. For the case of a less viscous middle layer, the large growth
instabilities occur at longer, but finite, wavelengths, and can also be observed in the
long-wavelength limit.

Weinstein & Chen (1999) also find that the free-surface tension can have an
appreciable effect on wave growth. They also note that whenever there is a large
growth-rate instability, there is a corresponding mode having the same wavelength
that decays at virtually the same rate. That is, the dispersion relation between the
wavelength and complex frequency yields complex conjugate modes. Weinstein &
Chen suggest that this indicates there is a strong interaction between the liquid–liquid
interfaces in the system (as first proposed by Li (1967) for three-layer flow between
confined walls). A physical explanation for these trends has not been elucidated.

In this paper, we examine the configuration of three-layer flow down an inclined
wall, and demonstrate that no satisfactory mechanism of the onset of instability can
be obtained from the classical inertialess instability theories in which the acceleration
of disturbances is completely neglected in the steady Stokes equations. The reason
for this is given at the end of § 2. In the present work, we retain consistently the
acceleration terms in both the linearized Navier–Stokes equations and the kinematic
boundary condition for finite Re. We then obtain a convergent solution for the
eigenvalues and the corresponding eigenfunctions. These eigen-solutions enable us to
construct the energy budgets itemized in § 3. Our convergent solution for any finite
Re including Re= 0 enables us to explain the physical mechanism of the inertialess
instability in the limit of Re = 0. The mechanism of the onset of the instability is
given in § 4. The results of our analysis and calculation show that the vestige of the
instability mechanism at small finite Re persists as Re → 0.

Next, to test the significance of the linear theory result, and to compare with
experimental results in this paper, we carry out a direct numerical simulation based
on the full Navier–Stokes equations with nonlinear boundary conditions in § 5. The
method used here has been validated for many different multi-phase problems
including two-layer flows (Helenbrook 2001; Helenbrook & Baker 2002; Jiang,
Helenbrook & Lin 2004). Note that the weakly nonlinear evolution of three-layer
flows down an inclined plane has been investigated previously at long wavelengths
(Kliakhandler & Shivashinsky 1997; Kliakhandler 1999), but this work is not directly
applicable here because linear stability theory predicts that short waves dominate the
wave growth. Section 6 gives details of the experiments, and provides a verification
of both the linear analysis and the nonlinear simulations.

2. Formulation and linear theory
Consider the simultaneous flow of three liquid layers each having the same density,

ρ, under the influence of gravity, g, down a wall inclined at angle θ . The Newtonian
viscosity of each layer is denoted as µk where k ∈ [1, 3], the subscripts denoting
the layer number where 1 is the bottom. We assume that the free surface has a
constant tension σ , and that the liquid–liquid interfacial tensions are zero. The origin
of an x∗–z∗ coordinate system is placed at the wall, and the flow is assumed to
be invariant in the y∗-direction even when disturbed. A superscript ∗ denotes a
dimensional quantity, to distinguish variables from dimensionless quantities to follow.
It is assumed that the dynamics of the air have a negligible effect on the flow. The
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generally time-dependent location of each interface is parameterized as z∗ = η∗
k(x

∗, t∗),
and the x∗- and z∗-velocity components in each layer are denoted as U ∗

k (x∗, z∗, t∗) and
V ∗

k (x∗, z∗, t∗), respectively, where t∗ is time. The pressure in each layer is denoted as
P ∗

k (x∗, y∗, t∗). For the undisturbed flow where all interfaces are parallel to the solid
wall, the interface heights are given by ηk = H ∗

k , the local velocity is in the x-direction
alone denoted as U ∗

k =Uk

∗
(z), and the pressure field is given as P ∗

k =P k

∗
(z).

Variables are scaled using features of the unperturbed parallel flow. The total film
thickness, H ∗

3 , is used to scale distance. A velocity scale, Us , is constructed from
the analytical single-layer formula for the velocity at the free surface by using the
bottom-layer viscosity, µ1, the total film thickness H ∗

3 , and density ρ, as:

Us =
ρg(H ∗

3 )2 sin θ

2µ1

. (2.1a)

The time scales as H ∗
3 /Us , and the pressure in each layer scales as ρU 2

s . These are the
same scales as used by Weinstein & Chen (1999). Scaling the equations of motion,
continuity, and associated boundary conditions, the following dimensionless groups
arise

Re =
ρUsH

∗
3

µ1

, Nk =
µk

µ1

, Hk =
H ∗

k

H ∗
3

, Ca =
µ1Us

σ
. (2.1b)

In (2.1b), note that σ denotes the free-surface tension and N1 = H3 = 1. In what follows,
the star notation (∗) has been dropped on dependent and independent variables to
indicate they are dimensionless.

The undisturbed parallel flow fields are given by

Uk = − 1

Nk

z2 + ck1z + ck2 k = 1, 2 and 3, for z ∈ [Hk−1, Hk], (2.2a)

P k = −2 cot(θ)

Re
z, (2.2b)

where

c11 = 2H3/N1, (2.2c)

c12 = 0, (2.2d)

c21 = 2H3/N2, (2.2e)

c22 =
H1(H1N1 − H1N2 − 2H3N1 + 2H3N2)

N1N2

, (2.2f)

c31 = 2H3/N3, (2.2g)

c32 =
(
−H 2

2 N1N3 + H 2
2 N1N2 + H 2

1 N1N3 − H 2
1 N2N3 − 2H2H3N1N2

+ 2H2H3N1N3 − 2H1H3N1N3 + 2H1H3N2N3

)/
(N1N2N3

)
, (2.2h)

In (2.2a), note that H0 = 0 by definition.
To examine the instability of the basic flow given by (2.2), we perturb the basic

flow
Uk = Uk + uk, Vk = V k + vk, ηk = Hk + hk, Pk = P k + pk (2.3)

where uk, vk, hk and pk are dimensionless perturbation quantities. The perturbed flows
(2.3) are substituted into the equations of motion, continuity and associated boundary
conditions. The linearized Navier–Stokes equations are given by:

vk,t + Uk · ∇vk + vk · ∇Uk = −∇pk +
Nk

Re
∇2vk (2.4a)

∇ · vk = 0, (2.4b)
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where Uk = Ukx̂, vk = ukx̂ + vkẑ, and x̂ and ẑ are unit vectors in the respective x-
and z-directions. In (2.4a,b), the subscript k again denotes layer number, and the
additional subscript t following the comma denotes partial differentiation with time;
this notation will be used in what follows.

The boundary condition at the wall is the no-slip condition:

u1 = v1 = 0 at z = 0. (2.4c)

We first expand all variables in the interfacial boundary condition by use of the
Taylor series about the unperturbed interfacial positions. Then we linearize the inter-
facial conditions. This allows us to apply the boundary conditions at the known
unperturbed interfacial locations. Boundary conditions applied at z = Hk , k = 1 and 2
are the kinematic boundary condition

vk = hk,t + Ukhk,x, (2.4d)

the velocity continuity conditions

vk = vk+1, (2.4e)

Uk,zhk + uk = uk+1 + Uk+1,zhk, (2.4f)

the interfacial shear stress balance

Nk(Uk,zzhk + uk,z + vk,x) = Nk+1(Uk+1,zzhk + uk+1,z + vk+1,x) (2.4g)

and the normal stress balance

−P k,zhk − pk +
2Nk

Re
vk,z = −P k+1,zhk − pk+1 +

2Nk+1

Re
vk+1,z. (2.4h)

Similarly, the free-surface boundary conditions at z = H3 are the kinematic boundary
condition

v3 = h3,t + U 3h3,x, (2.4i)

the shear stress balance

U 3,zzh3 + u3,z + v3,x = 0, (2.4j)

and the normal stress boundary condition

−P 3,zh3 − p3 +
2N3

Re
v3,z − We−1

3 h3,xx = 0, (2.4k)

where We3 = Ca Re is a Weber number.
To solve the linearized system (2.4), a streamfunction ψkUsH

∗
3 is introduced in

each layer that satisfies uk = ∂ψk/∂y vk = − ∂ψk/∂x. Thus, the continuity equation
(2.4b) is implicitly satisfied and the explicit appearance of both velocity components
is eliminated. The transformed equations admit superimposed travelling waves having
the Fourier components:

ψk = ϕk(z) ei(α x−ωt), (2.5a)

hk = Ak ei(αx−ωt), (2.5b)

where it is understood that only the real part is physically significant. In (2.5), ϕk(z)
is a flow eigenfunction, Ak is the possibly complex amplitude of the interfacial or
free-surface movement, and i = (−1)1/2; additionally, α is a purely real dimensionless
wavenumber that is related to the dimensionless wavelength λ as α =2π/λ, and
ω =ωR +iωI is the complex dimensionless frequency defined in terms of real quantities
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ωR and ωI . The dimensional counterpart of wavelength and frequency are defined
as H ∗

3 λ and ωUs/H
∗
3 , respectively. Substituting the form (2.5) into the kinematic

constraints (2.4a) and (2.4d) yields a relation between Ak and ϕk(Hk) (i.e. the value of
ϕk(z) at each unperturbed interface). This allows us to reduce the linearized system
(2.4) into a generalized eigenvalue problem to solve for the complex relation ω = ω(α)
and the eigenfunctions ϕk(z). With small notational differences, the resulting system
of equations, which constitutes a linear eigenvalue problem, is identical to that solved
by Weinstein & Chen (1999) if Re= 0 is assumed. In the current work, however, we
preserve the appearance of inertia so we can examine the limiting process for finite,
but small, Re as Re → 0.

In the presentation of data that follows, we find it useful to write explicitly the
equation for the interface shape in travelling-wave form by employing (2.5b) and
complex polar form as:

Ak = ak eiγk , (2.6a)

where ak and γk are the magnitude and phase. We can then write the real interface
solution as:

hk = ak exp(ωI t) cos[α(x − ct) + γk] for k ∈ [1, 3], (2.6b)

where c is the wave speed (purely real) given by:

c =
ωR

α
. (2.6c)

In the inertialess instability theory of Weinstein & Chen (1999), Re is put to zero
a priori in (2.4a), and thus the inertia term drops out. This asymptotic procedure,
however, restricts the range of frequencies and wavenumbers that may be examined as
follows. When (2.5) is substituted into (2.4a), the time and space derivatives bring out,
respectively, ω and α to the coefficients of the inertia term. Consequently, the local and
convective acceleration terms are, respectively, of orders Reω and Reα. This indicates
that large wavenumber and frequency disturbances satisfying (ω, α) = 0(Re−1) are
excluded when Re = 0 is assumed. Thus, if the disturbance is to be constructed with
all possible frequency and wavenumber by use of Fourier superposition of all normal
modes, then the acceleration term must be retained even in the limit of Re = 0. Thus,
to assure that instabilities are examined in the most general way, the inertia term must
be retained in the governing equation as well as in the kinematic boundary condition.
In the present work, convergent series solutions which are uniformly valid for all ω

and α and finite Re, including Re= 0, are obtained. The solutions allow us to calculate
the energy budget delineated in the next section, and to evaluate the time rate of
energy growth in the bulk of the flow. The uniformly convergent solutions enable
us to explain unambiguously the physical significance of inertialess instability as the
limiting case of Re → 0. In passing, we point out that even if the inertialess instability
solution is considered to be the lowest-order regular perturbation solution valid in
the frequency and wavenumber ranges mentioned above (i.e. Reω � 1, Reα � 1), the
time rate of energy growth of disturbances in the bulk flow can be assessed only in
the next-order solution that incorporates inertial terms (but again, is restricted to the
same frequency and wavenumber ranges).

3. Derivation of energy equation
The details of the derivation of the energy equation for a two-layered film flow are

given by Jiang et al. (2004). The derivation for the present three-layer case is similar.
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Therefore, only the outline of the derivation is given here. To obtain the energy
equation, we form the dot product of (2.4a) with vk , and integrate over the cont-
rol volume per unit width consisting of the coating thickness H3( = 1) and one
dimensionless wavelength. We then integrate over one dimensionless period of the dis-
turbance 2π/ωR , convert the volume integrals to surface integrals by use of the
divergence theorem whenever applicable, and apply boundary conditions (2.4c–k) to
the resulting surface integrals. The resulting energy budget reads:

KIN − (RE1 + RE2 + RE3) = DI1 + DI2 + DI3 + SH1 + SH2 + SH3 + SUF + PRF,

(3.1a)
where

KIN =

3∑
k=1

ωR

4πλ

2π/ωR∫
0

d

dt

Hk∫
Hk−1

λ∫
0

(
u2

k + v2
k

)
dx dz dt, (3.1b)

REk = − ωR

2πλ

2π/ωR∫
0

Hk∫
Hk−1

λ∫
0

ukvkUk,z dx dz dt, (3.1c)

DIk = − NkωR

2πλRe

2π/ωR∫
0

Hk∫
Hk−1

λ∫
0

[2(uk,x)
2 + (uk,z + vk,x)

2 + 2(vk,z)
2] dx dz dt, (3.1d)

SHk =
NkωR

2πλRe

2π/ωR∫
0

λ∫
0

[(uk − uk+1)(uk,z + vk,x)]z=Hk
dx dt, (3.1e)

SUF =
ωR

2πλCaRe

2π/ωR∫
0

λ∫
0

(v3h3,xx)z=H3
dx dt, (3.1f)

PRF =
ωR

2πλ

2π/ωR∫
0

λ∫
0

(v3h3P 3,z)z=H3
dx dt. (3.1g)

KIN represents the change of kinetic energy averaged over one wavelength and one
period of the disturbance fluctuation. It is positive, negative or zero, depending on
whether the flow is unstable, stable or neutrally stable. The other terms may be
positive or negative, depending on whether they do the work on, or drain the energy
from, the bulk of the fluid. RE1, RE2 and RE3 represent, respectively, the Reynolds
stress work rate in the lower, middle and upper layers; DI1, DI2 and DI3 represent
the respective energy dissipation in layers 1, 2 and 3; SH1 is the rate of work done by
the shear stress at the interface z = H1 owing to the discontinuity in the disturbance
velocity, so that the velocity at the deformed interface can be continuous; similarly,
SH2 is the rate of work at the interface z = H2; SH3 is the shear stress work rate
required at the free surface z = H3, so that the deformed free surface can be shear
free. In the formula for SH3, u4 should be replaced by zero. SUF is the rate of surface
tension work on the three-layer film flow; and the last term in (3.1a) represents the
pressure work on the top layer. Note that P 3 in PRF is proportional to 1/Re as
shown in (2.2a), and is zero for a vertical film flow.

In order to evaluate the energy budget, we must know the perturbation eigen-
functions (vk, pk, hk). These are obtained from the solution to the system (2.4) using the
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forms of the perturbed velocities and interface locations (2.5). The required eigenvalues
and eigenfunctions have been obtained here by use of the Chebyshev collocation
method for finite Re and finite wavelength λ. The eigenvectors are obtained by use of
subroutine EIG in Matlab. Sufficiently large numbers of Chebyshev collocation points
are retained to ensure the required numerical accuracy. The obtained eigenvalues are
compared with the results of Weinstein & Chen (1999) and Weinstein & Kurz (1991)
in the ranges of wave frequency and wavenumbers in which the inertia terms may be
neglected. It is found that results are in excellent agreement.

The obtained eigenfunctions are used to evaluate the real physical variables
appearing in each integrand in (3.1). Each integrand is evaluated by use of QUADL
in Matlab. Note that the integration over t and x can be carried out by hand. The
sum of all integrals on the right-hand side of (3.1a) must be equal to the left-hand
side of (3.1a) which is evaluated independently. This provides an additional check for
numerical accuracy. For all of the finite-Reynolds-number numerical results reported,
the left-hand side and the right-hand side agree at least up to three significant
digits. In the zero-Reynolds-number case, a different procedure is used which will be
discussed later. It should be pointed out that the eigenfunctions are obtained here
with a convergent series for any finite Re including the limiting case of Re → 0. In
addition to providing the integrands in (3.1), the obtained eigenvectors allow us to
examine the evolution of stable and unstable interfacial waves within the confines of
linear theory. This allows us to compare results with those from the simulation and
experimental results to follow.

4. Mechanism of the three-layer inertialess instability
Weinstein & Chen (1999) found that among four typical viscosity stratifications,

the configuration with a thin middle layer having either the smallest or largest
viscosity gives the most prominent instability. We will examine cases similar to
those investigated in Weinstein & Chen – a thin less viscous middle layer and a thin
more viscous middle layer. For both cases, we fix θ at π/2, and keep the top- and
bottom-layer viscosities the same. Only the middle-layer viscosity is varied. In such
configurations, the high growth unstable mode occurs in a pair with a mode having
the same wavelength, but damps at almost the same rate. That is, the normal modes
are characterized by almost exactly complex conjugated eigenvalues, ω(α) in (2.5). In
what follows, we examine the unstable interfacial mode.

The eigenvector describing the unstable mode is determined only up to an arbitrary
multiplication factor. Only the sign and relative magnitude of each term in the
energy budget (3.1a) is of importance. To give the absolute magnitude of KIN
some physical significance, we normalize the eigenvectors such that the magnitude
of KIN is equal to ωI , the unstable growth rate. The numerical values of KIN
and some of the energy budget items on the right-hand side of (3.1a) are given
in table 1 and are plotted in figure 1 for the case of a less-viscous middle
layer (Re =0.1, N2 = 0.2, H1 = 0.475, H2 = 0.525, and Ca = 0.001). The values are
chosen to coincide with those of figure 3 of Weinstein & Chen except at finite
Reynolds number. (There are typographical errors in the value of Ca in figures 2–14
of Weinstein & Chen (1999), Ca = 1000 should read Ca−1 = 1000.) The first column
gives the wavelength λ; the wavelength range chosen corresponds to the high growth
unstable range identified by Weinstein & Chen. The largest magnitude terms are
the dissipation terms, DI1, DI2 and DI3, and interfacial shear terms, SH1 and SH2;
these are of the same order of magnitude. The power delivered to each layer through
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λ KIN DI1 DI2 DI3 SH1 SH2 SH3 SUF

1.84 5.65 × 10−2 −3.84608 × 102 −8.24207 × 102 −3.84575 × 102 1.03165 × 103 5.61548 × 102 −9.480 × 10−4 −4.598 × 10−3

2.06 1.42 × 10−1 −1.48236 × 102 −3.08448 × 102 −1.43225 × 102 4.02127 × 102 1.97595 × 102 −1.530 × 10−3 −5.330 × 10−3

2.31 1.78 × 10−1 −8.94165 × 101 −1.76046 × 102 −8.24289 × 101 2.42198 × 102 1.05550 × 102 −1.909 × 10−3 −4.857 × 10−3

2.59 1.96 × 10−1 −6.38099 × 101 −1.16332 × 102 −5.54524 × 101 1.70843 × 102 6.46368 × 101 −2.435 × 10−3 −4.656 × 10−3

2.99 2.04 × 10−1 −4.64112 × 101 −7.49340 × 101 −3.68373 × 101 1.21359 × 102 3.67361 × 101 −3.334 × 10−3 −4.643 × 10−3

3.36 2.02 × 10−1 −3.80711 × 101 −5.49019 × 101 −2.77574 × 101 9.73140 × 101 2.33465 × 101 −4.338 × 10−3 −4.855 × 10−3

3.66 1.98 × 10−1 −3.36347 × 101 −4.42866 × 101 −2.28726 × 101 8.44783 × 101 1.62570 × 101 −5.309 × 10−3 −5.122 × 10−3

4.11 1.90 × 10−1 −2.93074 × 101 −3.39446 × 101 −1.80222 × 101 7.19384 × 101 9.29006 −7.029 × 10−3 −5.742 × 10−3

4.48 1.82 × 10−1 −2.67657 × 101 −2.80694 × 101 −1.51935 × 101 6.46437 × 101 5.34818 −8.688 × 10−3 −6.403 × 10−3

5.64 1.57 × 10−1 −2.21428 × 101 −1.77127 × 101 −1.00103 × 101 5.15354 × 101 −1.68229 −1.564 × 10−2 −9.426 × 10−3

7.10 1.32 × 10−1 −1.95076 × 101 −1.19787 × 101 −6.97409 4.41619 × 101 −5.68518 −2.908 × 10−2 −1.569 × 10−2

8.93 1.09 × 10−1 −1.77653 × 101 −8.55834 −5.07307 3.94264 × 101 −7.96824 −5.493 × 10−2 −2.811 × 10−2

1.73 × 101 5.80 × 10−2 −1.56896 × 101 −4.64381 −2.84365 3.35471 × 101 −9.81353 −3.840 × 10−1 −1.823 × 10−1

3.17 × 101 2.93 × 10−2 −1.43415 × 101 −3.95198 −3.43203 3.07631 × 101 −5.76904 −2.422 −8.507 × 10−1

5.32 × 101 1.33 × 10−2 −1.11483 × 101 −5.00865 −8.47915 3.75791 × 101 −6.81704 −5.365 −7.634 × 10−1

9.46 × 101 6.80 × 10−3 −9.54203 −5.02363 −9.46683 4.41036 × 101 −1.54772 × 101 −4.448 −1.481 × 10−1

1.78 × 102 3.61 × 10−3 −9.23940 −4.87299 −9.24539 4.45812 × 101 −1.71757 × 101 −4.027 −2.177 × 10−2

3.26 × 102 1.97 × 10−3 −9.19425 −4.84240 −9.19693 4.45635 × 101 −1.73620 × 101 −3.965 −3.543 × 10−3

Table 1. Partial energy budget for disturbances at Re= 0.1, N1 = N3 = 1, N2 = 0.2, H1 = 0.475, H2 = 0.525, H3 = 1, We1 = We2 = 0, Ca= 0.001 and
θ = π/2.
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Figure 1. The dependence of the power contributed from various terms in the energy budget
on the wavelength, λ, for a low-viscosity middle-layer configuration at low Reynolds numbers.
Re= 0.1, N1 = N3 = 1, N2 = 0.2, H1 = 0.475, H2 = 0.525, H3 = 1, Ca = 0.001 and θ = π/2.

interfacial shear is always positive, and the viscous dissipation is always negative,
as they should be. Thus, the interfacial shear is always destabilizing and viscous
dissipation is always stabilizing. The work rate terms SH3 and SUF at the free
surface are negative. The magnitude of the sum of DI1, DI2, DI3 and SUF is larger
than that of the sum of SH1 and SH2. Thus, the power by interface shear work
is drained mainly by the viscous dissipation and weakly by the free-surface tension
work and shear work.

Figure 1 shows that the sum of the right-hand-side terms is negative which implies
that the Reynolds stresses must be included to have positive energy growth. RE2 is
greater than KIN, thus the energy transferred by the thin less-viscous layer is enough
to cause the kinetic energy growth shown in the figure. Although this is true, we
emphasize that the interfacial shear work terms give 3 orders of magnitude more
energy production for this case. The Reynolds stresses provide just enough energy
to make the entire sum positive. To verify whether the above situation continues in
the limit of zero Reynolds number, we obtain results for Re= 0.05 and Re = 0.01
also. For these cases, the relative magnitudes of KIN, RE1, RE2 and RE3 are almost
identical to those in figure 1. We note that for the Re in this range, the left-hand and
right-hand sides of the energy budget agree to more than 8 significant digits.

We cannot examine the limiting case of Re =0 directly because each term on the
right-hand side of the energy budget (3.1a) is divided by Re. However, if we multiply
the right-hand side through by Re and evaluate each term in (3.1a), we find that the
right-hand side consists of large-magnitude dissipation and shear work terms (such
as in table 1) whose difference is exceedingly small as Re → 0. Thus, the right-hand
side actually has an indeterminate form of 0/0 in the limit of Re = 0, and L’Hôpital’s
rule applies. Numerically, we cannot retain accuracy in this limiting process. However,
our results for finite but increasingly small Re in the range of numerical accuracy
demonstrates that the sum of these terms remains finite. On the other hand, the
left-hand side of (3.1a), however, always retains numerical accuracy in the limit, as no
indeterminate form arises. Therefore, we can use the sum of the left-hand side terms
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Figure 2. The dependence of the power contributed from various terms in the energy budget
on the wavelength, λ, for a low-viscosity middle-layer configuration at low Reynolds numbers.
Re =0.1, N1 = N3 = 1, N2 = 5, H1 = 0.475, H2 = 0.525, H3 = 1, Ca =0.001 and θ = π/2.

to evaluate the sum of the right-hand side terms, since both must always be equal.
If we then make a plot similar to figure 1 but for zero Reynolds number, we find
that the results are indistinguishable from those shown in figure 1. This confirms that
the Reynolds stresses must be included to have positive energy growth in the limit
of Re → 0. The Reynolds stresses remain positive in the limit of Re → 0 while the
sum of the shear work and dissipation terms remains negative. Usually, the Reynolds
stress contribution to hydrodynamics instability and its role in turbulence generation
is associated with large-Reynolds-number flows. We have offered here a rare example
of the crucial role of the Reynolds stress in the low-Reynolds-number instability of
stratified flows.

Figure 2 shows the case when the middle layer is more viscous. The flow parameters
are the same as those of figure 1 except N2 = 5. Note that there is a wavelength regime
shown in figure 2, i.e. 0.2 � λ� 0.36, for which the sum of the right-hand side is positive
and thus contributes to wave growth; this is qualitatively different from the case of
a less viscous middle layer, as shown in figure 1, where the right-hand side is always
negative. Nevertheless, over the whole wavelength range, figure 2 shows that RE1

and RE3 are the main contributors to KIN, and thus it is the Reynolds stress in
the lower-viscosity layers that is primarily responsible for the energy growth of the
flow. If we recalculate figure 2 at Re= 0, we again find that the situation remains the
same.

The Reynolds stress can also explain the effects of the free-surface tension and
the thickness ratios on the inertialess instability. Weinstein & Chen in their figure 15
showed that the free-surface tension has significant effects on the instability of the
flow, especially in the range 0.02 <Ca < 2.5. Figures 3 and 4 show KIN, RE1, RE2

and RE3 for the maximum growth rate of all wavenumbers as the capillary number
changes. The flow parameters in figure 3 are the same as those in figure 15 of
Weinstein & Chen and N2 = 0.2. From figure 3, we can see that RE2 is always greater
than KIN and is much greater than RE1 and RE3. Thus, the energy transferred by
Reynolds stress in the middle layer is crucial for the instability, as found in figure 1.
It is the variation of RE2 that causes the steep slope of the growth rate in the range
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Figure 3. The dependence of the power contributed from various terms in the energy budget
on the inverse capillary number, 1/Ca, for a low-viscosity middle-layer configuration at Re= 0.
Results are given for the maximum growth rate of all wavelengths for a given capillary number.
N1 = N3 = 1, N2 = 0.2, H1 = 0.475, H2 = 0.525, H3 = 1 and θ = π/2.
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Figure 4. The dependence of the power contributed from various terms in the energy budget
on the inverse capillary number, 1/Ca, for a high-viscosity middle-layer configuration at Re= 0.
Results are given for the maximum growth rate of all wavelengths against the inverse capillary
number. N1 = N3 = 1, N2 = 2.5, H1 = 0.475, H2 = 0.525, H3 = 1, and θ = π/2.

0.02 <Ca < 2.5. Meanwhile, the sum of the dissipation, shear and other work terms
remains negative. Therefore, the capillary number affects the instability by promoting
greater energy transfer in the middle layer through the Reynolds stress. The effect
of surface tension on a flow with a more viscous middle layer is shown in figure 4.
We choose the same flow parameters as those in figure 16 of Weinstein & Chen and
N2 = 2.5. In contrast to the case of a less viscous middle layer, RE1 and RE3 are now
crucial for the instability of the flow, as also seen in figure 2. The effect of the surface
tension on the Reynolds stress solidifies the arguments of Loewenherz & Lawrence
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(1989) that the eigenfunctions are affected by the whole flow field and thus have a
global character, even while it is the local presence of the liquid interfaces that allows
for the existence of unstable modes.

The above results show that the Reynolds stress in the less viscous layers, no matter
how small, is required to induce instability in the limiting case of Re → 0. Other data,
not shown here, verifies that this conclusion is generally valid for cases in which
relative layer thicknesses and positions are varied, such as shown in figures 6, 8, 13
and 14 of Weinstein & Chen (1999). It should be pointed out that our conclusions are
established through the use of convergent series solutions for eigenvectors. This allows
us to establish firmly that the inertialess instability predicted by previous workers on
the basis of the Stokes equation is physically significant.

5. Nonlinear simulations
In this section, we present nonlinear simulations of three-layer flows and compare

the results to the linear analysis. The method used to perform the simulations is
an hp(h= mesh resolution, p = polynomial order)-finite-element method developed
for Navier–Stokes simulations of incompressible multi-fluid flows. It uses arbitrary-
Lagrangian–Eulerian (ALE) mesh movement to follow the position of the free surface
and interfaces. At these surfaces, the fully nonlinear kinematic and jump conditions
are enforced. The combination of hp finite elements with ALE mesh movement allows
us to obtain a high order of spatial accuracy for this problem. For the simulations
presented here, a fourth-order polynomial basis is used which gives fifth-order spatial
accuracy. In time, a 4-step diagonally-implicit Runge–Kutta (DIRK) formulation is
used (Williams et al. 2002), which gives third-order temporal accuracy. We also use a
mesh adaptation algorithm to resolve fine-scale features. The hp finite-element method
is described by Helenbrook (2001) and the adaptation algorithm is described in
Helenbrook & Baker (2002). We examine two cases corresponding to those examined
in the energy budget analysis. The only change is that, to match the experiment (§ 6),
we set the Reynolds number to 0.01.

5.1. Less viscous middle layer

The first case has a less viscous middle layer and is given by Re= 0.01, N2 = 0.2,
H1 = 0.475, H2 = 0.525 and Ca = 0.001. This is identical to the conditions of table 1
except the Reynolds number is a factor of 10 smaller in the simulation. We use a
periodic domain in the direction parallel to the flow. Periodic boundary conditions
are compatible with the base solution and the perturbation solutions of the linearized
analysis. For these conditions, the most-unstable wavelength is approximately 3 times
the depth, therefore we set the non-dimensional domain length to 3 in order to
examine the most unstable mode. The initial element mesh and domain are shown
in figure 5. The resolution of the simulation is four times that of the element mesh
because on each element there is a fourth-order polynomial space. A non-dimensional
time step of 0.0625 is used for the calculation. We have analysed the DIRK scheme
(ignoring the spatial discretization error), and at this time step the growth rate of the
unstable mode will be predicted with less than 1% error.

For initial conditions, we assume the flow is at the base state given by (2.2). The
interface location h1 is then given a sinusoidal perturbation while h2 and the free-
surface are left unperturbed. The initial perturbation is a sine wave of wavelength 3
and amplitude of 0.001. Figure 6 shows the profile of the middle layer at time
intervals corresponding to one period of propagation. The free-surface position is not
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Figure 6. Interfacial positions for various times for a low-viscosity middle-layer configuration
corresponding to Re= 0.01, N1 = N3 = 1, N2 = 0.2, H1 = 0.475, H2 = 0.525, H3 = 1, Ca =0.001
and θ = π/2.

shown because it remains nearly perfectly flat during the simulation. For visualization
purposes, the position of the middle layer is shifted upward with time according the
formula, y = y − 0.5+ t/10. t = 0 then corresponds to having the middle layer centred
at y = 0 on the figure, and the middle layer shifts up 0.35 each period. We show two
wavelengths of the disturbance to facilitate comparison with the experimental layer
cross-sections shown in the § 6.

The first profile shown is after approximately four periods of propagation. At this
time, nonlinear effects are not significant and the interfacial shapes are still fairly
sinusoidal. The upper sinusoid is shifted slightly to the downstream direction (to the
right) which leads to a thicker downward sloped region. As the amplitude of the
perturbation grows, nonlinear effects play an increasingly important role. The last
profile corresponds to a time at the end of the simulation. The interface shapes are
no longer sinusoidal, and we have large beads of fluid separated by thin strands. This
behaviour is also seen in the experimental results, as we will see in § 6.

An intriguing aspect of the nonlinear evolution is how well it is predicted by linear
analysis. If we normalize the eigensolution of the unstable mode such that a1 = 0.001
and γ1 = 0 in (2.6b), then a2 = 0.974a1 and γ2 = −0.62. Figure 7 shows the interface
and free-surface shapes predicted by linear theory for these parameters. The amplitude
grows exponentially and translates in time according to (2.6b) with ωI =0.204 and
c =0.850. Note that the interface evolution in figure 7 looks remarkably similar to
that in figure 6. At the last time shown, the linear theory predicts that the upper and
lower interfaces intersect. However, the linear theory predicts the profiles well, up to
the point at which the position of the middle layer rises and falls with an amplitude
that is larger than its thickness.

Furthermore, figure 8 shows the x position of the extrema of the middle layer,
namely the minimum of h1 and the maximum of h2, as a function of time. To remove
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Figure 7. Shapes of the interfaces for the most unstable wave predicted from linear theory
at the same conditions of figure 6. Parameters for the linear solution are a1 = 0.001, γ1 = 0,
a2 = 0.973a1, γ2 = −0.62, ωI = 0.204, and c = 0.850.
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Figure 8. Position of minimum of h1 and maximum of h2 as a function of time.

the jumps that occur because of the periodic boundaries, each time the extrema passes
through the periodic boundary, we add a domain length to its position. From this
plot, we see that the position curves are almost perfectly linear, implying that the
propagation velocity of the disturbance, c, is a constant. The last time shown on the
figure corresponds to the last condition shown in figure 6. On figure 8, a propagation
period corresponds to a vertical shift of distance 3 (the wavelength). There is a very
slight deviation from linear for the first period of propagation. This deviation is
because of the initial conditions. The initial conditions are a linear combination of
several modes, therefore one unique speed for the disturbance cannot be identified.
As the unstable mode grows and the other modes decay, the behaviour is dominated
by the unstable mode. If we fit lines to the data excluding the first period, we find
propagation speeds equal to c = 0.846 for h1 and c = 0.843 for h2 compared to the
prediction of c = 0.850 from the linear analysis from (2.6b). Thus, the linear analysis
provides a very good prediction of the propagation velocity. This prediction remains
accurate even to the nonlinear conditions shown in figure 6.

The phase shift between the upper and lower interface shapes, γ2 − γ1 in (2.6b) is
shown as a function of time in figure 9. Examining the figure, we find that after an
initial transient period, the phase shift varies in the range of −0.65 to −0.70 radians.
As discussed above, the linear analysis predicts a value of −0.62 so there is again
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good agreement between the nonlinear simulations and the analysis. After a time of
t = 20, nonlinear effects set in and the phase shift begins to depart from the linear
value. Near the end of the simulation, the interfacial profiles are far from sinusoidal
(and at these times, the linear theory incorrectly predicts that the upper and lower
interfaces intersect), so the phase shifts predicted by linear and nonlinear theories do
not agree.

The amplitude growth of the disturbance, exp(ωI t) in (2.6b), is also predicted well
by the linear analysis. figure 10 shows the amplitude of the disturbances h1 and h2

as a function of time. The amplitude of h2 starts at zero because we do not disturb
h2 initially. Over the first few periods, we see a transient region where the stable
modes decay and the unstable mode grows until it dominates the behaviour. Once the
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Figure 11. Interfacial positions at various times for a high-viscosity middle-layer configuration
corresponding for Re =0.01, N1 = N3 = 1, N2 = 5, H1 = 0.475, H2 = 0.525, H3 = 1, Ca = 0.001
and θ = π/2.

unstable mode dominates, the amplitudes exponentially grow. If we fit an exponential
curve to these plots excluding the first period, we find a growth rate of ωI = 0.193 for
h1 and ωI =0.202 for h2. There is some spread in the curve fits because, in the initial
transient period, the unstable mode does not completely dominate. The exponential
growth rate predicted by the linear analysis for the most amplified mode is ωI = 0.204,
thus we again have good agreement with the linear analysis. The linear analysis can
be used to predict the amplitudes of the perturbations well, even for conditions under
which nonlinear effects are clearly important.

5.2. More viscous middle layer

The case of the more viscous middle layer is given by Re =0.01, N2 = 5.0, H1 = 0.475,
H2 = 0.525 and Ca = 0.001. These are the same conditions as the large-viscosity-ratio
case discussed in § 4 (figure 2), except that the Reynolds number is again a factor of
10 smaller. The simulations are done in the same way as for the previous case. The
main difference between this case and the previous case is that the most unstable
wavelength is approximately 1/3 the layer height instead of 3 times the layer height.
Therefore, we use an initial perturbation of non-dimensional wavelength of 1/3 in
order to examine the most unstable mode. The computational domain is similar to
that shown in figure 5, except the length is set to one and the resolution is increased
by a factor of 2. A domain length of three times the wavelength is chosen so that
we can determine if there is a nonlinear transfer of energy to wavelengths longer
than our initial perturbation. A non-dimensional time step of 1/70 is used for the
calculation. The smaller time step is necessary because, although the growth rates of
both cases are similar, the oscillation rate for this case is more than 7 times larger.

Figure 11 shows middle-layer profiles in a manner similar to figure 6. In this
case, time intervals corresponding to nine periods of propagation are shown. The
position of the middle layer is shifted upward with time according the formula,
y = y −0.5+ t/30. t =0 again corresponds to having the middle layer centred at y = 0,
and the middle layer shifts up 0.13 every nine periods. The first profile shown is after
about 34 periods of propagation. Again we see a similar behaviour where large beads
of fluid separated by thinner strands are formed. The manifestation of nonlinear
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Figure 13. Amplitude of perturbations to h1 and h2 as a function of time.

effects is thus fairly independent of viscosity ratio and wavelength. In addition, the
results remain periodic on a wavelength of 1/3, which shows that there is no tendency
for larger wavelength structures to develop.

As was true in the previous case, the linear analysis gives a very good prediction
of the shapes, amplitudes and speeds of the disturbance, even when nonlinear
effects should be important. Figures 12 and 13 show the horizontal positions of
the perturbation extrema and the perturbation amplitudes as a function of time. The
speeds of the disturbances as determined by a linear fit to the curves shown in figure 12
are c = 0.7288 for h1 and c = 0.7295 for h2. In this case, we have excluded the first
three periods of propagation. The transient period lasts a greater number of periods
because although the growth rates of the disturbances are about the same in both
cases, the period of propagation is smaller for this case. The linear analysis predicts
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Figure 14. Shapes of the interfaces for the most unstable wave predicted from linear theory
at the same conditions of figure 11. Parameters for the linear solution are a1 = 0.0005, γ1 = 0,
a2 = 1.05a1, γ2 = −1.82, ωI = 0.118 and c = 0.732.

a disturbance speed of c =0.732. The exponential growth rates of the disturbances
predicted by exponential fits to the curves in figure 13 are ωI = 0.104 for h1 and
ωI = 0.123 for h2. There is some spread due to the initial transient region, which
remains significant for longer than 3 periods. The linear analysis predicts a growth
rate of ωI = 0.118.

Figure 14 shows the middle-layer profiles as predicted by the linear analysis in
the same manner as figure 11. Because of the large initial transient in the nonlinear
simulations of this case, we extrapolated the exponential fits to the curves in figure 13
to t = 0 to obtain an initial amplitude rather than picking the same initial amplitude
as the simulation. The parameters are then a1 = 0.0005 and γ1 = 0 and a2 = 1.05a1

and γ2 = −1.82 in (2.6b). Again, we see remarkable agreement between the nonlinear
simulations and the analysis even up to perturbation amplitudes that are larger than
the middle-layer thickness. This leads us to conclude that the importance of nonlinear
effects is better predicted by the ratio of the perturbation amplitude to the domain
height than to the middle-layer thickness.

6. Experimental
6.1. Background

The experimental configuration used to examine the three-layer inertialess instability
in our work employs an industrial curtain coating process (Kistler & Schweizer 1997;
Weinstein & Ruschak 2004). Figure 15 shows a schematic of the experimental coating
system. A fundamental component of the system is the coating die distributor. The
distributor is wide and extends into the plane of figure 15, and serves to transform
inlet pipe flows into liquid sheets extending across the die width. The die consists of
relatively large cavities and narrow slots running its full width, which partition flow
resistance to create relatively widthwise-invariant flow in the slots.

The inclined surface of the coating die, referred to as a slide, allows liquid layers
to be stacked on top of one another. As the flow is laminar, the liquid layers remain
distinct without mixing. For this experiment, the layers have the same solvent and are
thus miscible. As a result, liquid–liquid interfaces do not have an interfacial tension,
and interlayer diffusion of mobile components may occur as described in § 6.2. After
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Figure 15. Diagram showing portion of coating process. Insets show details of a coating die,
including the slide, as well as wave instabilities that may form on the slide and on the web.

stacking up on the slide, the liquid layers fall freely as a layered curtain that is then
coated onto a web. The complete multi-layered liquid coating structure is referred
to as a coating pack (or pack), which is subsequently dried downstream to create a
solid, multiple-layered structure. Typically, each layer of the pack has some functional
quality, such as a specific sensitivity to different wavelengths of light in photographic
products. In our experiments, however, the layer viscosities are chosen to exhibit a
three-layer instability, and non-photoactive optical density material is placed in the
coating to allow interfacial instabilities to be observed, as will be discussed in § 6.3.

The study of three-layer flow along a stationary wall using the system in figure 15
is complicated by the fact that wave instabilities can occur on both the slide and
the web (Weinstein 1990; Kistler & Schweizer 1997). Despite the fact that the web
is moving, a shift in frame of reference to that translating with the web recovers
gravity-driven flow along a stationary wall. As will be shown in what follows, it is
the flow along the web, and not the slide, that is typically suitable for studying the
low-Reynolds-number regime.

On a web moving at speed V , the gravity-driven flow is small enough that the
total liquid-film thickness, H ∗

3 , may be approximated as if all layers are in plug flow,
i.e.H ∗

3 = q/V , where q is the cumulative volumetric flow rate per unit width delivered
from the die to all layers. A typical web velocity is of the order of a few hundred
centimetres per second and q is typically 2 cm2 s−1. This gives a wet-film thickness (i.e.
prior to drying) of the order of 100 µm. The volumetric flow per unit width induced by
gravity in the web frame is qw ∼ UsH

∗
3 , where Us is given in (2.1a). For a 1 poise liquid

having a density of 1 g cm−3 and a 100 µm coating on a vertical web path (θ = 90◦), this
estimate gives a volumetric flow per unit width in the web frame of 4.9×10−4 cm2 s−1;
the corresponding Reynolds number in (2.1b) has the same numerical value. Thus, the
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Reynolds number in the web frame is exceedingly small, and an essentially inertialess
three-layer flow may be achieved. Note that in this example, the average velocity of
the film in the web frame, i.e. qw/H ∗

3 , is 3.3 × 10−2 cm s−1. This is negligible compared
with typical web speeds and justifies our contention that the film thickness of each
layer may be calculated as if the flow is a plug on the web.

On the slide, the individual thicknesses of the liquid layers are not linearly
proportional to the volumetric flow rate delivered to each layer. A good approximation
to the total thickness of the liquid layers, H ∗

3 , is given as:

H ∗
3 ≈

(
3qµ1

ρg sin θ

)1/3

, (6.1)

where again, q is the cumulative volumetric flow rate per unit width of all layers. The
approximation (6.1) is supported by theoretical predictions from Weinstein (1990)
for Newtonian liquids. In the above example of a 100 µm coated film on the web,
the corresponding film thickness on the slide is approximately 1.5 mm according to
(6.1) which is of the order of ten times thicker. Note that according to (6.1) and
(2.1a), UsH

∗
3 = 3q/2, and thus the Reynolds number in (2.1b) may be expressed as

Re = 3ρq/2µ1. For the typical coating conditions given in the previous paragraph,
this Reynolds number is O(1). Thus, only the flow on the web can be used to examine
low-Reynolds-number instabilities.

6.2. Water diffusion

Arguments in § 6.1 suggest that the low-Reynolds-number three-layer instability can
be studied experimentally by examining the flow on the web. Unfortunately, these
experiments are complicated by the fact that wave instabilities, having appreciable
inertia, may still arise on the slide (see § 6.1). We have indeed found this to be the
case – coating packs exhibiting large growth on the web are often prone to slide wave
instabilities. The inertia in the slide flows allows appreciable wave growth, even for
two-layer systems. Although slide instabilities typically have wavelengths of the order
of a factor of 10 larger than inertialess instabilities arising on the web, they are often
extreme enough to affect locally the total pack thickness, H ∗

3 , coated on the web.
This, in turn, can affect the growth rate on the web and make it difficult to assess the
inherent stability of the coating structure at its mean thickness.

We have discovered a way to avoid these slide waves and, in the process, have
elucidated an important physical mechanism present in coating flows having multiple
layers. In particular, we have found that diffusion of water between layers, driven
by composition differences, may substantially alter the liquid viscosities on the web
after the pack is coated, such that inertialess instabilities arise, but slide instabilities
are avoided. In simple solutions consisting of primarily gelatin and water, we have
evidence that differences in the gelatin weight percentage (gel %) between layers drive
water diffusion, where water migrates from low gel% to high gel%. For a given
diffusion coefficient, D, and length scale, L, a diffusion time can be estimated as

t∗ ∼ L2

4D
. (6.2)

The diffusion coefficient of water in gelatin is approximately 3 × 10−6 cm2 s−1

(Gehrmann & Kast 1978). Inertialess instabilities are accentuated with a thin middle
layer. For a thin layer of 7 µm wet thickness, the time necessary for the water to
diffuse through this layer is, using (6.2), approximately 0.04 s. This is short compared
with the typical time available for wave growth on the inclined web path used in our
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experiments. Note that for a 150 µm coating structure, however, the time required
for the diffusion front to pass through all layers is about 19 s. Thus, a thin layer can
completely change its water composition and associated viscosity quickly in the time
available on the inclined web path, even as the whole coating structure continues to
evolve through diffusion.

Water diffusion also occurs on the slide where the liquid layers first come in contact.
However, the layer thicknesses on the slide are much larger than the diffusion length
scale for water. As a result, although there is some blurring of interfaces on the slide
surface, our experimental results indicate that the layer viscosities do not change
enough to cause significant wave instabilities on the slide.

In order for a three-layer inertialess instability to arise on an inclined web, water
diffusion must drive the layers into a configuration having a viscosity difference
across a thin middle layer. In particular, the viscosity of the thin middle layer must
be either lower or higher than that of both the top and bottom layers, as described by
Weinstein & Chen (1999) and in previous sections. We restrict attention to symmetrical
coating packs in which the layer composition and thickness of the top and bottom
layers are identical. To avoid slide instabilities, we would like the layers to be nominally
matched in viscosity on the slide. Therefore, in our experiments, we deliver the same
initial viscosity in each layer to the coating die but different gel% by weight. This is
accomplished by using viscosifying agents (thickeners), which have the property that
small additions cause large changes in viscosity. As the starting gel% in the layer
is varied, the amount of polymeric thickener is adjusted to achieve the same initial
viscosity in each layer. Given enough time, and assuming that the water diffusion
process is driven solely by the gel %, each layer in the coating pack equilibrates to
the same gel%. We further assume that the mass of gelatin and thickener initially
delivered to any given layer remains the same throughout the diffusion process. At
equilibrium, then, the viscosity attained in each layer is different, given that the
thickener concentration is different.

Figure 16 shows how water is anticipated to diffuse in such experimental packs
for two different gel % configurations. In a case where there is a high gel% middle
layer and low gel% adjacent layers (with all layers initially having the same viscosity),
water diffuses into the middle layer, causing a low-viscosity middle-layer configuration
(see figure 16a). Similarly, for a gel % configuration in which there is a low gel %
middle layer and high gel % adjacent layers, water diffuses out of the middle layer,
leaving a high-viscosity middle-layer configuration (see figure 16b).

Although not strictly valid, the equilibrium value of the gel % in each layer gives us
a rough measure of the viscosity attained in the diffusing symmetrical pack. Because
the middle layer is thin compared with the top and bottom layers, the equilibrium
gel% of each layer in the coating pack is very close to that of the top and bottom
layers. The associated viscosities in the top and bottom layers, then, are approximately
equal to the starting values prior to diffusion. The viscosity of the middle layer, µ2,
can change significantly and may be expressed in terms of the equilibrium gel %, X,
via an empirical quadratic equation as

µ2 = aX2 + bX + c. (6.3a)

In (6.3a), the quantities a, b and c are constants that depend on the layer composition
(see § 6.3).

Because of water diffusion, the thicknesses of the layers also change. The equilibrium
thickness of each layer may be calculated by assuming that the liquid layer densities
are approximately equal (see § 6.3 for justification) and remain constant throughout
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Configuration delivered to coating die

31 cP

(a)

(b)

5% Gelatin + thickener

31 cP <31 cP11% Gelatin

Water

31 cP 5% Gelatin + thickener Water

Water diffusion into middle layer

Web

Configuration delivered to coating die

31 cP 11% Gelatin Water

31 cP 11% Gelatin Water

Water diffusion out of middle layer

Web

31 cP 5% Gelatin + thickener <31 cP

Figure 16. Diagram showing how the layer viscosities and thicknesses of a coating pack can
change as a result of water diffusion, starting from a configuration where layers initially have
the same viscosity. (a) A high gel% middle layer is sandwiched between two lower gel%
layers. Water diffusion drives water into the middle layer, and its viscosity drops while its
thickness increases. (b) A low gel% middle layer is sandwiched between two higher gel%
layers. Water diffusion drives water out of the middle layer, and its viscosity increases while
its thickness decreases.

the diffusion process. The equilibrium thickness of the middle layer, D∗
2 is calculated

assuming that only water moves between the layers as:

D∗
2 =

D0
2x2

X
, (6.3b)

where D0
2 and x2 are the starting thickness and gel % of the middle layer, respectively.

The equilibrium thickness of the top and bottom layers, D∗
1 and D∗

3 , follow as:

D∗
1 = D∗

3 = H ∗
3 − 1

2
D∗

2 (6.3c)

where H ∗
3 is the pack thickness that is constant throughout the diffusion process,

according to our constant-density assumption. Note that according to the formulation
in § 2:

H ∗
k =

k∑
j=1

D∗
j for k ∈ [1, 3]. (6.3d)

In the theoretical analysis and simulations of this paper, we have assumed that the
viscosity of each layer is constant throughout the wave growth process. According
to the discussion above, there is a gel% profile across the coating thickness that
evolves, even as waves grow. Thus, the viscosity will vary across the coating thickness.
Nevertheless, we propose that it is the viscosity jump across the interface that is the
predominant source of instability – even in these diffusing systems. We will use the
equilibrium values of the viscosity and layer thicknesses as given by (6.3) in the model
for qualitative comparisons with experiment.
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6.3. Experimental design

As stated previously, we restricted attention to symmetrical three-layer coating
structures in our experiments. We chose a wet coating thickness of the top and
bottom layers to be 71 µm and a 7 µm coating thickness in the middle layer, and the
width of all coatings was 4 in. Bone gelatin with an isoelectric point of 4.9 (Rose 1978)
was used in all experiments. The gelatin weight% of the bottom and top layers of the
coating pack were examined in the range of 5 %–11 % by weight in 1 % increments.
The viscosity of each layer was maintained at nominally 31 cP through the use
of a thickener; the thickener used was a potassium salt of octadecyl hydroquinone
sulfonate. In the 5 %–11 % gel range, the densities of the liquid layers were essentially
constant, varying only from 1.01 to 1.03 g cm−3; this justifies the constant-density
assumption used in the derivation of (6.6b). The top and bottom layers also had
TRITON X-200E surfactant (a sodium salt of octylphenoxydiethoxyethane sulfonate,
Union Carbide) solution added at 2.6 % by weight. This surfactant provided protection
from Marangoni flows induced by contamination that could lead to holes in the
curtain, and it ensured that the top and bottom layers fully wetted the middle layer
in the curtain. The equilibrium surface tension of the top and bottom surfaces was
30 dyn cm−1. The middle layer contained a black carbon slurry such that its optical
density on the web was about 1, and the layer also had a nominal viscosity of 31 cP.

The middle layer had two possible compositions. In the first configuration, the
middle layer consisted of 11 % gelatin by weight and, in the second configuration,
the middle layer consisted of 5 % gelatin by weight plus thickener. For the 11 %
middle layer, empirical coefficients of the viscosity curve (6.6a) were determined by
simple dilution of the liquid to be a = 0.55, b = −4.22, and c =11.44. For the 5 %
middle layer, we generated a concentrated version of the liquid having the appropriate
amount of thickener, such that when it was diluted to 5 %, it achieved the desired
viscosity of 31 cP. In this way, the viscosity curve (6.6a) could be generated through
dilution; the empirical coefficients obtained were a = 1.72, b = −8.02, and c =28.11.
Note that both empirical fits are only valid in the range of 5 % to 11 % gel.

Our experimental curtain coating system (figure 15) has an appreciable vertical
web path after coating, consisting of a 46 cm drop followed by a 244 cm rise. The
direction of the web motion with respect to gravity does not affect the observed wave
phenomena, as it may be viewed as occurring in the web frame of reference (§ 6.1);
the cumulative web path length relevant to wave instabilities, L, is thus 209 cm. The
horizontal web section adjoining the two vertical sections does not impact the wave
growth (except through the added short time available for water diffusion on this
section), as there is no gravity-driven flow here. All coatings were made at a web
speed, V , of 152.4 cm s−1 on 7 mil polyethylene terephthalate (PET) web. The effective
time for wave growth was t∗ = L/V =1.9 s. All three layers of coating liquid contained
gelatin, therefore, they were delivered at 40 ◦C to prevent setting in the pumps and
delivery lines, and an enclosure around the entire web path was nominally maintained
at this temperature. Downstream of the inclined web path, the coating was chilled to
immobilize it and, subsequently, was dried. All data provided in this paper are based
on dried coatings on the PET web.

6.4. Results

Table 2 provides post-diffusion equilibrium values of the viscosity and thickness for
each layer of the coating structure using (6.3) and following the discussion in § 6.2.
In addition, table 2 contains the theoretical dimensional growth rate, ω∗

I = ωIUs/H
∗
3 ,

and wavelength, λ∗ = H ∗
3 λ, associated with the wave having largest growth over all
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Gel % Viscosity (cP) Thickness (µm) Max growth wave

Case bottom/top Bottom/top Middle Bottom/top Middle λ∗ (mm) ω∗
I (s−1)

(a) A 5 31 4.0 66.8 15.4 0.74 4.92
B 6 31 5.7 68.1 12.8 0.59 4.85
C 7 31 8.6 69.0 11.0 0.52 4.03
D 8 31 12.6 69.7 9.6 0.49 3.04
E 9 31 17.6 70.1 8.6 0.49 2.05
F 10 31 23.8 70.7 7.7 0.55 0.98
G 11 31 31.0 71.0 7.0 — —

(b) A′ 5 31 31.0 71.0 7.0 — —
B′ 6 31 41.9 71.6 5.8 0.36 0.023
C′ 7 31 56.2 72.0 5.0 0.36 0.029
D′ 8 31 74.0 72.3 4.4 0.078 0.83
E′ 9 31 95.2 72.6 3.9 0.042 1.96
F′ 10 31 119.9 72.8 3.5 0.030 2.55
G′ 11 31 148.0 72.9 3.2 0.026 2.81

Table 2. Approximate diffused pack structures at equilibrium with growth results. (a) Middle
layer 11 % gel; (b) 5% gel.

wavelengths for each diffused pack structure from inertialess theory. In an experiment
in which noise excites waves at all wavelengths and given enough time, it is this wave
that will be predominantly observed in the coating. As shown in table 2, when the
growth rate is large, the wavelengths associated with cases of a high-viscosity middle-
layer (i.e. the middle layer starts at 5 % gel) are of the order of 10 times smaller
than those having a low-viscosity middle layer (i.e. the middle layer starts at 11 %
gel). Predicted wavelengths for the low-viscosity middle layer configurations in table 2
lie in the range of 0.49–0.74 mm, while those for a high-viscosity middle layer lie in
the range of 0.026–0.078 mm. Note that there is anomalous wave growth data (much
longer wavelength and lower growth) for cases B′ and C′ in table 2. These results
arise because the viscosity jump across the interface is not large enough to induce the
nearly complex conjugate frequency modes required for large growth, as described at
the beginning of § 4. The maximum growth rates and wavelengths for these cases are
of the same order as those found in a two-layer inertialess system (Loewenherz &
Lawrence 1989; Chen 1993) and cannot be observed in our experiments in the time
available for wave growth. Note also that no wave data is supplied in table 2 for
cases G and A′, as these are single-layer systems that do not exhibit wave growth.

Figure 17 shows typical images of coating samples having a post-diffusion low-
viscosity middle layer (figure 17a) and high-viscosity middle layer (figure 17b). Because
optical density is found in the middle layer, darker and lighter regions of the images
indicate a thickening and thinning of the layer, respectively. Figures 17(a) and 17(b)
give images corresponding to cases A (low-viscosity, middle layer) and G′ (high-
viscosity, middle layer), respectively, for a 3 mm length of coating. The images in
figure 17 have wavelengths that are of the order of those predicted in table 2, and
clearly show the theoretically anticipated difference in wavelength predicted by the
linear model. This is despite the fact that there is a three-dimensional character to the
waves across the coating width in figure 17 (waves in the linear model are assumed
to be two-dimensional). While the origin of this three-dimensional character is not
known, it is possible that they may be triggered by small inhomogeneities in the liquid
or by local viscosity variations incurred during diffusion.
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Figure 17. Typical comparison between coating samples having a post-diffusion low-viscosity
middle-layer and high-viscosity middle-layer configuration. (a) A sample having a low-viscosity
middle-layer configuration corresponding to case A in table 2. (b) A sample having a
high-viscosity middle-layer configuration corresponding to case G′ in table 2.
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Figure 18. Cross-sections of typical post-diffusion low- and high-viscosity middle-layer
samples corresponding to top views shown in figure 17. (a) Case A in table 2, having a
low viscosity middle-layer; (b) case G′ in table 2, having a high-viscosity middle layer. The
cross-sections are taken in the flow direction and are perpendicular to the images shown in
figure 17.

Figure 18 provides cross-sectional views of a 0.7 mm section of the coating samples
shown in figure 17; the cross-sections are taken in the flow direction (the gravity-
driven flow moves from left to right in the figures) and perpendicular to the plane
of the coating images in figure 17. The superimposed numbers denote the individual
layers, where layer 1 is the bottom and layer 3 is the top; recall that the middle layer
2 contains the optical density. The cross-sections are taken after the dried gelatin
coatings have been swelled by water to enhance resolution. Note that although
the coated thicknesses of both samples in figure 18 were the same, their swelled
layer thicknesses are different owing to the different amount of total gelatin in both
structures. Additionally, the swelled layer thicknesses are different from those on
the inclined web path after coating and, so, the cross-sections can provide only a
qualitative picture of the actual wave phenomenon. Nevertheless, the cross-sections
clearly show that the middle layer exhibits a varicose wave pattern (i.e. there is a
thinning and thickening of the layer) in figures 18(a) and 18(b). Figure 18(a) also
shows that there is a sinuous component (i.e. the two interfaces have a tendency to
move in phase) of the waveform superimposed on these thickness variations. This
sinuous component may also be observed in figure 18(b), although to a lesser extent.
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Figure 19. Coating samples for a post-diffusion low-viscosity middle-layer pack configuration
corresponding to conditions A, C, and G in table 2. As the difference in the gel% between the
middle and top and bottom layers decreases, the severity of the wave imperfection decreases.

Note that the top interface (between layer 3 and air, which corresponds to the free
surface when the film is in its liquid state) appears to be nominally flat in both
cross-sections in figure 18 to within the resolution of the cross-sectioning technique
and in agreement with numerical simulations.

The cross-section in figure 18(a) (corresponding to case A in table 2) is in strong
qualitative agreement with either of the first two middle-layer profiles of the nonlinear
simulation shown in figure 6. Figure 18(a) also agrees well with the interface shapes
constructed from linear theory in figure 7. Similarly, the cross-section in figure 18(b)
(corresponding to case G′ in table 2) agrees well with the last profile of figure 11,
revealing thin ascending strands alternating with large beads of fluid.

The images in figure 18 show large thickness variations in the internal layer
that violate the linearity assumption implicit in the theoretical data of table 2. The
apparent nonlinearity of the waveforms, which also manifests itself in the non-uniform
wavefronts along the coating width in figure 17, precludes a strictly valid comparison
of our theoretical wavelengths in table 2 with those in the images. Nevertheless, a
simple division of the length of the coating samples in figures 17 and 18, by the
number of wave amplitudes (the dark peaks), gives an approximate wavelength of
about 0.4 for case A and 0.04 for case G′. Considering the approximate nature of our
diffusion model, and the nonlinear effects, these values are reasonably close to those
given in table 2. Additionally, note that for a time of 1.9 s on the vertical web path
and values of ω∗

I from table 2, wave growth, according to (6.1) for cases A and G′ are
1.15×104 and 2.08×102, respectively. These large growths are at least consistent with
the occurrence of the observed nonlinear waveform, because even small disturbances
are being magnified greatly.

Figures 19 and 20 give magnified top view images of coating samples corresponding
to the post-diffusion low-viscosity and high-viscosity middle layers, respectively, for
selected conditions shown in table 2. Direct comparison between the two figures
may be made by noting that the primed and unprimed cases (A and A′, G and G′)
correspond to the same initial top- and bottom-layer properties, and only the middle
layer is different. In figure 19, which has an 11 % gel middle layer, case A shows
the greatest severity, while in figure 20, which has a 5 % gel middle layer, case A′

shows no waves. Case G in figure 19 shows no waves, but case G′ in figure 20 shows
the greatest severity waves. Intermediate coating samples between the cases shown in
figures 19 and 20, not shown here, continue the trends shown in these figures. That is,
the data in both figures indicate that as the gel% difference between the middle and
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Figure 20. Coating samples for a post-diffusion high-viscosity middle-layer pack configuration
corresponding to conditions A′, E′ and G′ in table 2. As the difference in the gel% between the
middle and top and bottom layers increases, the severity of the wave imperfection increases.

adjacent layers decreases, the severity of the waves decreases in qualitative agreement
with the growth data in table 2.

7. Summary and closing comments
We have provided a rare example, if not the first, of the crucial role of the

Reynolds stress in the mechanism of instability at small Reynolds numbers. The
vestige of the Reynolds stress remains, even in the limit of Re → 0. The origin of the
small-Reynolds-number instability in a two-layer liquid film falling along a flat plate
was found to be due to the interfacial shear work, even in the limit of Re → 0 (Jiang
et al. 2004). Three-layer film flows exhibit much larger magnitude instabilities when
the middle layer is relatively thin and has a much larger or smaller viscosity compared
with its adjacent layers (Weinstein & Chen 1999). Although the magnitudes of the
interfacial shear and viscous dissipation terms remain much larger than other terms
in the energy budget, the viscous dissipation is slightly greater than the destabilizing
effect of interfacial shear, even in the limit of Re → 0. Therefore, unlike the two-
layer case, Reynolds stresses in the low viscosity layers are found to be an essential
agent of instability. The mechanism of the instability for finite but small Reynolds
number has been shown to remain the same, even as Re → 0. Thus, the notion of an
inertialess instability is clearly established and conclusions drawn from previous work
are validated.

The notion of inertialess instability has been supported further by experiments and
numerical simulation. The simulations show that regardless of whether the middle
layer is more or less viscous than the other layers, nonlinear effects manifest themselves
by forming large beads of middle-layer fluid connected by thin strands. Although
nonlinear effects strongly affect the evolution of the shape of the layers, the linear
analysis does an excellent job of predicting the amplitude growth and propagation
velocity well after nonlinear effects become significant. This is also observed in
experiments.

The linear theories and nonlinear simulation presented here do not include effects
of water diffusion. Yet, even in the presence of water diffusion, predictions are in good
agreement with experimental observations. This supports our proposed mechanism
regarding the direction of water diffusion as dictated by the gel% differences across
the layers. It also supports our contention that the viscosity differences across the
interfaces are predominantly responsible for the instability, even when layer viscosities
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vary internally. The factor of 10 difference in wavelength between the post-diffusion
low- and high-viscosity middle-layer configurations allows us easily to distinguish
experimentally the direction of water diffusion in the coating structure. For a low- or
high-viscosity middle-layer configuration, table 2 shows there is a relative insensitivity
of the wavelength to changes in pack structure. This partially accounts for our
comparisons between theory and experiment being successful, despite the relatively
simple approximations used to determine pack structures upon which wave predictions
are made.

More sophisticated diffusion predictions could be directly coupled with a hydro-
dynamic theory for wave growth that allows viscosity to vary in each layer to obtain a
more quantitative comparison with experiments. This coupled theory, of course, would
be predicated on the fact that we can characterize the diffusion process occurring
accurately. Such a coupled analysis is a subject for future work.
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